Wavelet based ANN Approach for Transformer Protection
نویسنده
چکیده
This paper presents the development of a wavelet based algorithm, for distinguishing between magnetizing inrush currents and power system fault currents, which is quite adequate, reliable, fast and computationally efficient tool. The proposed technique consists of a preprocessing unit based on discrete wavelet transform (DWT) in combination with an artificial neural network (ANN) for detecting and classifying fault currents. The DWT acts as an extractor of distinctive features in the input signals at the relay location. This information is then fed into an ANN for classifying fault and magnetizing inrush conditions. A 220/55/55 V, 50Hz laboratory transformer connected to a 380 V power system were simulated using ATP-EMTP. The DWT was implemented by using Matlab and Coiflet mother wavelet was used to analyze primary currents and generate training data. The simulated results presented clearly show that the proposed technique can accurately discriminate between magnetizing inrush and fault currents in transformer protection. Keywords—Artificial neural network, discrete wavelet transform, fault detection, magnetizing inrush current.
منابع مشابه
Transformer differential protection using wavelet transform
This paper will propose a cascade of minimum description length criterion with entropy approach along with artificial neural network (ANN) as an optimal feature extraction and selection tool for a wavelet packet transform based transformer differential protection. The proposed protection method provides a reliable and computationally efficient tool for distinguishing between internal faults and...
متن کاملArtificial Intelligence Based Approach for Identification of Current Transformer Saturation from Faults in Power Transformers
Protection systems have vital role in network reliability in short circuit mode and proper operating for relays. Current transformer often in transient and saturation under short circuit mode causes mal-operation of relays which will have undesirable effects. Therefore, proper and quick identification of Current transformer saturation is so important. In this paper, an Artificial Neural Network...
متن کاملClassification of Transient Phenomena in Power Transformers Based on a Wavelet-ANN Approach
This paper presents an efficient wavelet and neural network (WNN) based approach for distinguishing magnetizing inrush currents from internal fault currents in three phase power transformers. The wavelet transform is applied first to decompose the current signals of the power transformer into a series of detailed wavelet components. The values of the detailed coefficients obtained can discrimin...
متن کاملDiscrimination between Inrush and Fault in Transformer: ANN Approach
Transformer protection is critical issue in power system as the issue lies in the accurate and rapid discrimination of magnetizing inrush current from internal fault current. Artificial neural network has been proposed and has demonstrated the capability of solving the transformer monitoring and fault detection problem using an inexpensive, reliable, and noninvasive procedure. This paper gives ...
متن کاملWavelet and ANN Based Relaying for Power Transformer Protection
This paper presents an efficient wavelet and neural network (WNN) based algorithm for distinguishing magnetizing inrush currents from internal fault currents in three phase power transformers. The wavelet transform is applied first to decompose the current signals of the power transformer into a series of detailed wavelet components. The values of the detailed coefficients obtained can accurate...
متن کامل